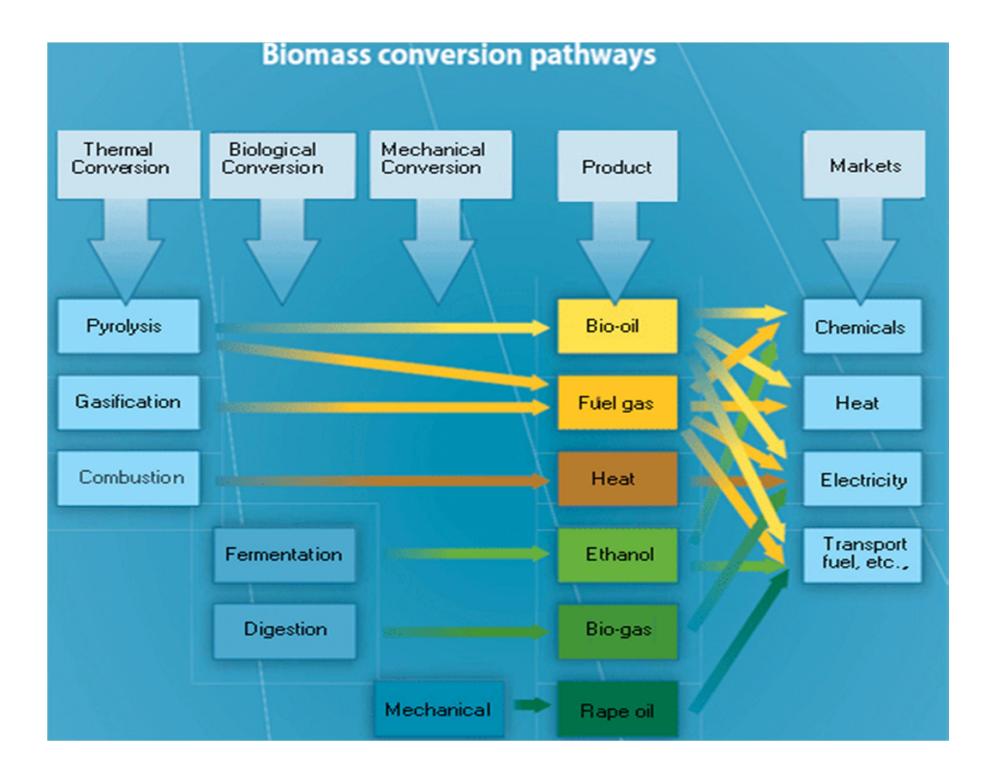
Poly generation using Biomass gasification

4th February 2013



INDIAN INSTITUTE OF SCIENCE Bangalore, India

भारतीय विज्ञान संस्थान

बेंगलूर, भारत

Biomass Gasification is the process of conversion of *solid* biomass to *gaseous* form by partial pyrolysis, oxidation and reduction under sub-stoichiometric conditions.

Composition of Producer gas

 H_2 (18-20%) CO (18-20%) CH₄ (<3%) CO₂ (8-10%) and balance N₂

Thermal Applications

Power Generation and/or

Combination of Heat and Power

Kilns

Dryers

Furnaces

Boilers & Thermal Heaters

Thermal Applications

Typically used in melting Iron, Steel and Lead

Heat treatment furnace, Crumb rubber preparation, Biscuit Furnace, Tea drying and fluidized bed driers

Thermal Application

Hot water and process steam generators

e.g. in the chemical or pharmaceutical industry, paper industry, industrial cleaning, and farming.

Asphalt production

C

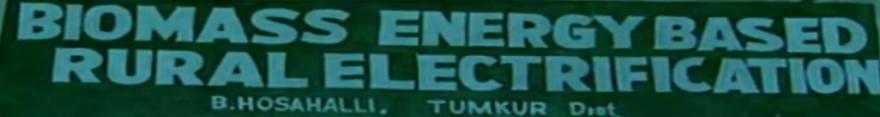
for drying and heating the aggregates.

Drying processes

e.g. in ore processing, mineral processing, sludge drying, biomass drying, and foodstuff drying.

Producer gas can be used in 100% Gas Engines and/or modified Diesel Engines in dual fuel mode (80% Producer Gas : 20% Diesel)

Energy in engine exhaust gas and engine jacket water can be recovered for heating or chilling application



Local power generation

on industrial estates and in residential areas with a poor supply situation.

Biomass Gasifier based power plants can be built from 25 kW to 3 MW.

Sponsored by 1. MIN. OF RURAL DEVELOPMENT. 2. MIN. OF NON CONVENTIONAL ENERGY SOURCES. 3. RAJIV GANDHI FOUNDATION.

Implemented by ASTRA &KSCST . 1.1.S& BANGALORE - 12

Byproduct is Biochar that guarantees output by 20% and best soil sequestration product

Case Study

PROJECT CONCEPT

- Tamilnadu is a power starved State
- Plant designed to meet the energy needs of
 - Mall
 - Multiplex
 - Hotel
 - Convention hall
- Land acquired for energy plantation to ensure fuel linkage

Location

- The project is located in the bustling Industrial town of Tirupur boasting of a turnover of 3 billion US \$ per annum of Hosiery products.
- Velan Hotels Limited in Tirpur is a 4 star rated hotel and one of the oldest and patronised hotel.
- Velan Hotels is located in a 20 acre plot which houses a hotel, 2 convention halls a Mall and a Multiplex. The power plant is located within the same premises

Energy Consumption Profile

Electricity	Annual consumption kWh	
Mall (12 hrs operation per day)	3,600,000	C
Multiplex (12 hrs operation per day)	1,400,000	C
Hotel	1,700,000	C
Convention Hall	300,000	C
Plant Auxiliary consumption	2,500,000	C
Grid feed	10,000,000	C
Total	19,500,000	C
Air conditioning	Tons Refrigeration (TR)	
Peak	1200	C
Average	800	C

WASTE HEAT RECOVERY DATA

Waste heat data from engines	JMS 320	JMS 620	
Electrical output	766	1976	kW
Exhaust gas temperature	456	456	Deg .C
Exhaust gas mass flow rate (wet)	4863	14399	kg/hr
Exhaust gas total energy available	632	1890	kW
Surface heat and unaccounted			
heat	101	205	kW
Energy removed by jacket water	268	417	kW
VAM recovery from waste heat	205	595	TR

PLANT CAPACITY

Plant sizing		
Gasifier	kg/hr	1600 x 2 = 3200
Engine	kW	766+1956 =2722
VAMs	TR	350 +700 +450 = 1500
Plant operating hours		7250
Plant load factor		82.5%
Specific fuel consumption kg	/kWh	1.00

Plant Configuration

PROJECT COST

Project cost	Rs.
Land	90,000,000
Building	22,000,000
Power plant machinery	170,000,000
Absorption Chillers VAMs	30,000,000
Miscellaneous fixed Assets	6,000,000
Preliminary and preoperative expenses	13,000,000
Total	331,000,000
Cost per kW	122,600
Cost per kW without land	89,260
Cost per kW without VAM	78,148
Subsidy	20,000,000
Cost per kW after subsidy	70,740

FISCAL BENEFITS

- Capital subsidy of Rs. 10,000,000/ MW
- Accelerated Depreciation Allowance
- Tax break of 50% for 5 years and 30% for the next 5 years

Plant Operating Parameters

		Rs
Specific fuel consumption	kg./kWh	1.00
Cost of wood Rs./kg		4.50
Input feed cost		4.50
O and M cost for gasifier		0.45
O and M cost for engine		0.95
Total cost		5.80

SPECIFIC FUEL CONSUMPTION

Average engine efficiency (Electrical)	37%
Input energy per kWh out put	2.70
Equivalent gas input @ 1150 kcal/Nm3	2.02
Average biomass input @2.5Nm3/kg	0.81

Revenue Projections

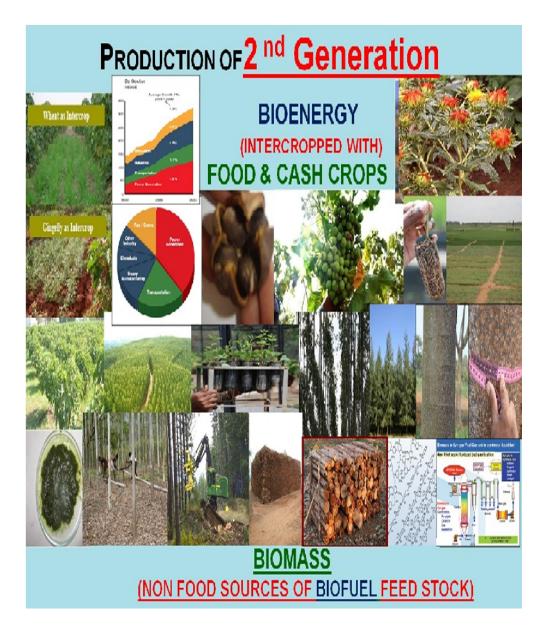
Electricity generated	19,500	MWH
Captive consumption	9,500	MWH
Grid feed	10,000	MWH
TNEB tariff - Commercial use	9,800	Rs./MWH
Notional cost at current tarif	f93.1	Rs.million
rate		
Rate of sale to third parties	7,000	Rs./MWH
Revenue from third party sale	70	Rs.million
Gross revenue	163.1	Rs.million
Cost of Air conditioning power	25	Rs.million
saved		
Cost of Generation	5,800	Rs./MWH
Annual generation cost	113.1	Rs.million
Net revenue from operation	75	Rs.million

Profit projections

Net revenue from operation	75	Rs.million
Average interest cost (loan 200	14	Rs.million
million@ 7% /annum		
Profit from operation	61	Rs.million
Sale of REC @ Rs. 1500/MWH	15	Rs.million
Net Profit	76	Rs.million
Net Profit / Equity	0.57	
Net Profit/ Project cost	0.23	

Gasifier Arrangement

Gas cooling and scrubbing system


Cooling tower bank

Gas Engine

Is there enough Biomass?

Type of Crops and biomass residue available/ 1 Kg of Crop

Crop Name	Residue Name	Amount (in Kg)
Areca Nut	Husk	0.80
	Hut	0.30
Arhar	Stalks	2.50
Avare	Stalks	1.10
	Cobs	0.33
Bajra	Husk	0.30
	Stalks	2.00
Banana	Residue	3.00
Barley	Stalks	1.30
Cardamom	Stalks	0.64
Coconut	Husk & Pith	0.53
Coconut	Shell	0.22
Coffee	Husk	0.50
Coriander	Stalks	1.15
Cotton	Boll Shell	1.10
Cotton	Husk	1.10
Cow Gram	Stalks	1.10
Cumin Seed	Stalks	1.55
Dry Ginger	Stalks	0.05
Garlic	Sheath	0.25
Garrie	Stalks	0.25
Green Gram	Stalks	1.10
Ground Nut	Shell	0.30
Ground Nut	Stalks	2.00
Guar	Stalks	2.00
Horse Gram	Stalks	1.30
	Cobs	0.50
Jower	Husk	0.20
	Stalks	1.70
Kodo Millets	Stalks	1.16
Linseed	Stalks	1.47

Crop Name	Residue Name	Amount (in Kg)
Maize	Cobs	0.30
Walze	Stalks	2.00
Masoor	Stalks	1.80
Meshta	Leaves	0.05
Weshta	Stalks	2.00
Mong	Husk	0.15
wong	Stalks	1.10
Mustard	Stalks	1.80
Niger Seeds	Stalks	1.28
Onion	Stalks	0.05
	Husk	0.20
Paddy	Stalks	1.50
	Straw	1.50
Paes and Beans	Stalks	0.50
Potato	Leaves	0.76
Polato	Stalks	0.05
Pulses	Stalks	1.30
Ragi	Straw	1.30
Red Gram	Stalks	1.10
Small Millets	Stalks	1.20
Soya Bean	Stalks	1.70
Sugaraana	Baggasse	0.33
Sugarcane	Top & leaves	0.05
Tapioca	Stalks	0.75
Turmeric	Stalks	0.30
Urad	Husk	0.20
	Stalks	0.10
Wheat	Pod	0.30
wheat	Stalks	1.50
Dried Chilly	Stalks	1.50
Oil Seeds	Stalks	2.00

Ideal species of trees for Energy Plantations

Species	Spacing (in Mtr)	Trees/ Acre	yield / tree <mark>(in Kgs)</mark>	Yield / Acre (tons)
Melia Dubia (Malai vembu)	1.5 x1.5	1,799	104	187
Paulownia fortunei	3 x 1.5	900	80	72
Paulownia trifoliata	2 x 2	1,012	70	71
Casuarina junghuhniana (Savukku)	1 x 1	4,049	30	121
Eucalyptus camaldulensis	1.5 x1.5	1,799	25	45
Eucalyptus tereticornis	1.5 x1.5	1,799	12	21
Prosopis juliflora (Velikathan)	1.2 x 1	3,374	17	57
Elephant Grass	Bush	Bush		40

Agri waste

Corn /Wheat straw, Sugar cane trash, fronds, Cotton stalks, Rice/ Coffee husk, wood chips, sawdust, fronts, Groundnut shell...anything.!

A Note on our company

- Provides total turnkey solutions in renewable, green and clean energy integrating various technologies – Gasification, Pyrolysis, Combustion, Biomethanation and Solar Thermal CSP with Parabolic Troughs.
- Support in **Energy Plantations** to ensure fuel linkage at viable prices over the life of the plant.
- Acclaim over the last decade and more of operation in the "Green Power" sector has more than 50,000 hours experience in Biomass Gasifier Plants. Acclaim today offers sustainable solutions for industries to replace fossil fuels (Diesel/Furnace Oil/LPG) in Thermal applications and Power Generation.
- Acclaim integrates a variety of technology options to offer best fit solutions using Biomass and have implemented projects pan India from TN to J&K.

Acclaim Technology Services

C-8, Shanthi Apartments, No. 18 (Old No. 21) TTK Road 1st Cross Alwarpet, Chennai - 600 018. Phone : 044 - 6515 5544, 2433 8183

email: acclaim.technology@gmail.com

Website: www.acclaimcleanenergy.com